J A B B Y A I

Loading

I. Introduction: The Declarative Prompt as a Cognitive Contract

This section will establish the core thesis: that effective human-AI interaction is shifting from conversational language to the explicit design of Declarative Prompts (DPs). These DPs are not simple queries but function as machine-readable, executable contracts that provide the AI with a self-contained blueprint for a cognitive task. This approach elevates prompt engineering to an “architectural discipline.”

The introduction will highlight how DPs encode the goal, preconditions, constraints_and_invariants, and self_test_criteria directly into the prompt artifact. This establishes a non-negotiable anchor against semantic drift and ensures clarity of purpose.

II. Methodology: Orchestrating a Cross-Model Validation Experiment

This section details the systematic approach for validating the robustness of a declarative prompt across diverse Large Language Models (LLMs), embodying the Context-to-Execution Pipeline (CxEP) framework.

Selection of the Declarative Prompt: A single, highly structured DP will be selected for the experiment. This DP will be designed as a Product-Requirements Prompt (PRP) to formalize its intent and constraints. The selected DP will embed complex cognitive scaffolding, such as Role-Based Prompting and explicit Chain-of-Thought (CoT) instructions, to elicit structured reasoning.

Model Selection for Cross-Validation: The DP will be applied to a diverse set of state-of-the-art LLMs (e.g., Gemini, Copilot, DeepSeek, Claude, Grok). This cross-model validation is crucial to demonstrate that the DP’s effectiveness stems from its architectural quality rather than model-specific tricks, acknowledging that different models possess distinct “native genius.”

Execution Protocol (CxEP Integration):

Persistent Context Anchoring (PCA): The DP will provide all necessary knowledge directly within the prompt, preventing models from relying on external knowledge bases which may lack information on novel frameworks (e.g., “Biolux-SDL”).

Structured Context Injection: The prompt will explicitly delineate instructions from embedded knowledge using clear tags, commanding the AI to base its reasoning primarily on the provided sources.

Automated Self-Test Mechanisms: The DP will include machine-readable self_test and validation_criteria to automatically assess the output’s adherence to the specified format and logical coherence, moving quality assurance from subjective review to objective checks.

Logging and Traceability: Comprehensive logs will capture the full prompt and model output to ensure verifiable provenance and auditability.

III. Results: The “AI Orchestra” and Emergent Capabilities

This section will present the comparative outputs from each LLM, highlighting their unique “personas” while demonstrating adherence to the DP’s core constraints.

Qualitative Analysis: Summarize the distinct characteristics of each model’s output (e.g., Gemini as the “Creative and Collaborative Partner,” DeepSeek as the “Project Manager”). Discuss how each model interpreted the prompt’s nuances and whether any exhibited “typological drift.”

Quantitative Analysis:

Semantic Drift Coefficient (SDC): Measure the SDC to quantify shifts in meaning or persona inconsistency.

Confidence-Fidelity Divergence (CFD): Assess where a model’s confidence might decouple from the factual or ethical fidelity of its output.

Constraint Adherence: Provide metrics on how consistently each model adheres to the formal constraints specified in the DP.

IV. Discussion: Insights and Architectural Implications

This section will deconstruct why the prompt was effective, drawing conclusions on the nature of intent, context, and verifiable execution.

The Power of Intent: Reiterate that a prompt with clear intent tells the AI why it’s performing a task, acting as a powerful governing force. This affirms the “Intent Integrity Principle”—that genuine intent cannot be simulated.

Epistemic Architecture: Discuss how the DP allows the user to act as an “Epistemic Architect,” designing the initial conditions for valid reasoning rather than just analyzing outputs.

Reflexive Prompts: Detail how the DP encourages the AI to perform a “reflexive critique” or “self-audit,” enhancing metacognitive sensitivity and promoting self-improvement.

Operationalizing Governance: Explain how this methodology generates “tangible artifacts” like verifiable audit trails (VATs) and blueprints for governance frameworks.

V. Conclusion & Future Research: Designing Verifiable Specifications

This concluding section will summarize the findings and propose future research directions. This study validates that designing DPs with deep context and clear intent is the key to achieving high-fidelity, coherent, and meaningful outputs from diverse AI models. Ultimately, it underscores that the primary role of the modern Prompt Architect is not to discover clever phrasing, but to design verifiable specifications for building better, more trustworthy AI systems.

Novel, Testable Prompts for the Case Study’s Execution

  1. User Prompt (To command the experiment):

CrossModelValidation[Role: “ResearchAuditorAI”, TargetPrompt: {file: “PolicyImplementation_DRP.yaml”, version: “v1.0”}, Models: [“Gemini-1.5-Pro”, “Copilot-3.0”, “DeepSeek-2.0”, “Claude-3-Opus”], Metrics: [“SemanticDriftCoefficient”, “ConfidenceFidelityDivergence”, “ConstraintAdherenceScore”], OutputFormat: “JSON”, Deliverables: [“ComparativeAnalysisReport”, “AlgorithmicBehavioralTrace”], ReflexiveCritique: “True”]

  1. System Prompt (The internal “operating system” for the ResearchAuditorAI):

SYSTEM PROMPT: CxEP_ResearchAuditorAI_v1.0

Problem Context (PC): The core challenge is to rigorously evaluate the generalizability and semantic integrity of a given TargetPrompt across multiple LLM architectures. This demands a systematic, auditable comparison to identify emergent behaviors, detect semantic drift, and quantify adherence to specified constraints.

Intent Specification (IS): Function as a ResearchAuditorAI. Your task is to orchestrate a cross-model validation pipeline for the TargetPrompt. This includes executing the prompt on each model, capturing all outputs and reasoning traces, computing the specified metrics (SDC, CFD), verifying constraint adherence, generating the ComparativeAnalysisReport and AlgorithmicBehavioralTrace, and performing a ReflexiveCritique of the audit process itself.

Operational Constraints (OC):

Epistemic Humility: Transparently report any limitations in data access or model introspection.

Reproducibility: Ensure all steps are documented for external replication.

Resource Management: Optimize token usage and computational cost.

Bias Mitigation: Proactively flag potential biases in model outputs and apply Decolonial Prompt Scaffolds as an internal reflection mechanism where relevant.

Execution Blueprint (EB):

Phase 1: Setup & Ingestion: Load the TargetPrompt and parse its components (goal, context, constraints_and_invariants).

Phase 2: Iterative Execution: For each model, submit the TargetPrompt, capture the response and any reasoning traces, and log all metadata for provenance.

Phase 3: Metric Computation: For each output, run the ConstraintAdherenceScore validation. Calculate the SDC and CFD using appropriate semantic and confidence analysis techniques.

Phase 4: Reporting & Critique: Synthesize all data into the ComparativeAnalysisReport (JSON schema). Generate the AlgorithmicBehavioralTrace (Mermaid.js or similar). Compose the final ReflexiveCritique of the methodology.

Output Format (OF): The primary output is a JSON object containing the specified deliverables.

Validation Criteria (VC): The execution is successful if all metrics are accurately computed and traceable, the report provides novel insights, the behavioral trace is interpretable, and the critique offers actionable improvements.

submitted by /u/Tough_Payment8868
[link] [comments]

Leave a Comment